EduMUSE

Soren Larsen snlarsen@ucsc.edu , Mudit Arora muarora@ucsc.edu,
Yousuf Golding ygolding@ucsc.edu, Ishika Kulkarni ikulkari@ucsc.edu
UC Santa Cruz, Silicon Valley Campus, Santa Clara, CA, USA

Abstract

EduMUSE is an interactive, multimodal ed-
ucational assistant designed to enhance stu-
dent learning through targeted, Al-powered
study support. Built using a modular multi-
agent architecture powered by CrewAl, Edu-
MUSE allows users to upload academic PDFs,
highlight specific text segments, and trigger
customized AI workflows. These workflows
include text summarization, quiz generation,
contextual question answering, external knowl-
edge retrieval, and podcast-style audio expla-
nations. The system emphasizes user control,
enabling learners to focus on areas they find
most challenging or important. All modules
are orchestrated via reusable agents, allow-
ing flexible composition and easy expansion.
EduMUSE showcases the potential of modular
LLM agents to augment traditional study work-
flows and support personalized, multimodal
learning experiences.

1 Introduction

We developed EAuMUSE, an educational mul-
timodal understanding and study engine that en-
ables learners to interactively explore and review
academic materials using large language models
(LLMs). Unlike prior Al-based tools that offer
static summarization or rigid learning paths, Edu-
MUSE provides a dynamic, user-driven experience
built around modular, agent-based workflows.

Our MVP prototype allows users to upload PDF
documents and highlight specific portions of text to
trigger targeted Al interactions. These include gen-
erating summaries, quizzes, question-answer pairs,
relevant external knowledge retrieval, and podcast-
style audio explanations via text-to-speech (TTS).
This multimodal interaction model supports per-
sonalized and exploratory learning, helping users
focus on content they find most challenging or con-
ceptually dense.

Although we initially envisioned a more exten-
sive pipeline with automated pacing control, grad-

ing of handwritten answers, and full session pack-
aging, our current prototype provides a functional
core experience that demonstrates the feasibility
and utility of interactive, multimodal study aug-
mentation. We also conducted preliminary evalu-
ations of key components such as summarization
quality and quiz generation accuracy, providing
encouraging evidence for further development.
EduMUSE contributes to the growing space of
Al-enhanced education by emphasizing modularity,
user control, and multimodal support. It showcases
how selective, user-initiated Al actions can aug-
ment traditional study practices and foster deeper,
more flexible engagement with academic materials.

2 Related Work

EduMUSE is grounded in a growing body of re-
search on intelligent tutoring systems, retrieval-
augmented generation, and multimodal applica-
tions of large language models (LLMs) in educa-
tion. While our prototype does not yet integrate
every planned feature, several works informed our
choices around summarization, content generation,
and user interaction.

Interactive Human-AI Tutoring. Thomas et
al. (1) demonstrated that hybrid human-Al tutoring
systems can improve learning outcomes by bal-
ancing automation with user agency. Their find-
ings support our design choice to build EdQuMUSE
around user-initiated interactions—specifically,
highlighting PDF segments to trigger modular Al
workflows.

Retrieval-Augmented Generation (RAG).
Dong et al. (2) present a flexible framework for
building adaptive tutors using knowledge graph-
augmented RAG pipelines. While our system
does not use knowledge graphs, the modular RAG
architecture inspired our implementation of a
knowledge retrieval feature based on document
context and keyword-driven external search.

Pedagogical Alignment in Tutors. Feng et
al. (3) introduced CourseAssist, emphasizing dif-
ficulty adaptation and response appropriateness in
CS education. Although our prototype did not fully
implement adaptive pacing, we explored complex-
ity control within generated questions and sum-
maries.

Multimodal Learning Tools. Jiang and Jiang (4)
emphasized the benefits of multimodal con-
tent—including diagrams and audio—to deepen
conceptual understanding. Our podcast-style TTS
summaries were directly motivated by this work,
as a lightweight way to support auditory learning.

Keyphrase Extraction for Educational QA.
Brun and Riedel (5) proposed using keyphrase ex-
traction to drive question-answer generation. We
employed a similar concept for generating quiz
questions, situational-based questions, and higher-
order questions based on user-selected text regions,
aligning educational content with user-identified
areas of focus.

Auditory Learning and TTS in Education.
Prior work in educational accessibility has shown
that auditory delivery of content (e.g., via podcasts
or screen readers) supports deeper engagement for
auditory learners and improves flexibility in study
contexts. EQuMUSE adopts a similar philosophy
through its TTS agent, enabling users to consume
Al-generated summaries in a spoken format that
complements visual learning.

These works collectively support the feasibil-
ity and relevance of EduMUSE’s MVP design,
even at a reduced scope. They validate our em-
phasis on personalization, modular Al tooling, and
multimodal engagement as key components of Al-
augmented study systems.

3 Proposed Solution

3.1 System Overview

EduMUSE is implemented as a modular Al-
powered study assistant that enables users to ex-
plore their own learning materials through targeted
Al actions. The current MVP focuses on supporting
interactive study sessions based on user-selected
text regions within uploaded PDF documents.

The system workflow is as follows: users upload
a PDF file and can then highlight specific passages
they wish to analyze or review. These selected pas-
sages are processed through a set of Al modules,

each of which generates a different form of educa-
tional output. This design emphasizes flexibility
and user control, allowing learners to focus on the
content most relevant to their needs.

The prototype includes the following Al mod-
ules:

1. Summarization: Generates concise sum-
maries of highlighted text using LLM
prompts.

2. Quiz Generation: Produces multiple-choice
and short-answer quiz questions based on the
selected content.

3. Question Answering: Allows users to pose
additional questions about the highlighted text
and returns contextual answers. The questions
are context-based as well as situational and
higher-order questions to enhance understand-
ing and apply reasoning skills.

4. Knowledge Retrieval: Retrieves relevant ex-
ternal information (articles, videos) based on
key concepts extracted from the selected text.

5. Podcast-style Summary: Converts the gener-
ated text summary into an audio file using text-
to-speech (TTS), supporting auditory learn-
ing.

Modules can be invoked independently for any
selected text segment, enabling personalized, on-
demand learning interactions. Although we origi-
nally planned additional features such as adaptive
pacing, automated grading of handwritten answers,
and complete session packaging, these were not
included in the current MVP due to project scope
constraints.

Overall, EQuUMUSE demonstrates the feasibility
of interactive, modular Al tooling for educational
content augmentation and provides a strong foun-
dation for future development.

3.2 Models and Tools

The following models and tools were used to im-
plement the current version of EQuMUSE:

LLMs for Generation Tasks. We used CrewAl
workflows, which abstract over large language mod-
els, to implement summarization, quiz generation,
question answering, and knowledge retrieval fea-
tures. Most flows leveraged either GPT-4 or Gem-
ini 2.5 models, depending on task suitability and
latency.

Knowledge Retrieval and Term Extraction.
Key term extraction and external knowledge re-
trieval were implemented using CrewAl’s retrieval
flows, which combine LLM-driven extraction with
external search APIs. No additional NLP libraries
(e.g., spaCy, Sentence-BERT) were required be-
yond what was handled within CrewAl modules.

Text-to-Speech (TTS). Podcast-style summaries
were generated using CrewAl flows integrated with
TTS APIs, with OpenAlI’s TTS services along with
Eleven Labs providing the best quality for our pro-
totype.

Frontend and Backend Stack. The frontend
was implemented as a lightweight web interface
supporting PDF upload, text highlighting, and in-
teraction with CrewAl workflows. A custom Flask
server handles file uploads, file serving, and ba-
sic file management, acting as a bridge between
the frontend and the CrewAl-based Al processing
pipelines. The server exposes REST endpoints for
PDF upload and retrieval, while AI workflows are
triggered through separate CrewAl APIs.

This architecture enabled rapid prototyping and
flexible experimentation, focusing our efforts on
user experience design and evaluation of Al-
assisted study features.

3.3 Knowledge Retrieval Implementation

Our Knowledge Retrieval module implements three
distinct approaches using CrewAl agents with spe-
cialized prompting strategies:

Web Search Flow. Uses SerperDevTool integra-
tion with an Academic Searcher agent prompted
to:

"Search for credible academic sources
about [topic]. Focus on .edu domains,
academic databases, and recent publi-
cations. For each source, provide title,

URL, publication venue, and credibility
assessment targeting 2023-2025 publica-
tions..."

LLM Knowledge Flow. Employs a Knowledge
Specialist agent that synthesizes information from
training data:

"Using your comprehensive training
data knowledge, provide academic
sources about [topic]. Generate a cu-
rated list of 5-8 sources including key pa-
pers, textbooks, publication details, and
relevance scores. Focus on foundational
papers and seminal works..."

Hybrid Retrieval Flow. Combines both ap-
proaches through a Hybrid Integration Specialist:

"Create a comprehensive academic
source collection using BOTH web
search for recent developments (2023-
2025) AND training data for foun-
dational works. Use web search
component for current papers and
LLM knowledge component for founda-
tional/seminal works. Combine both
sources into 8-10 sources total with clear
categorization by retrieval method and
relevance ranking..."

CrewAl Agent Architecture. Each retrieval
flow is implemented as a specialized CrewAl agent:

* Web Search Agent: Academic Searcher with
SerperDevTool access

* LLM Knowledge Agent: Knowledge Spe-
cialist with pure LLM synthesis

* Hybrid Agent: Integration Specialist combin-
ing both approaches

All agents execute tasks through CrewAlI’s or-
chestration framework, with results processed
through a standardized flow registry system en-
abling modular evaluation and comparison.

4 Experimental Design

4.1 Evaluation Goals
Our evaluation aimed to measure whether Edu-
MUSE modules improve students’ ability to review
and understand educational materials. Given the
modular design of the system, we performed sepa-
rate evaluations on core components, starting with
our Knowledge Retrieval agent.
4.2 Inputs

» User-uploaded study materials (PDFs)

» User-selected text spans (highlighted in fron-
tend)

» User-generated follow-up questions (QA mod-
ule)

4.3 Outputs

* Summaries of highlighted content
* Quiz questions based on selected text
* Answers to user questions (QA flow)

» External knowledge results (Knowledge Re-
trieval agent)

* Podcast-style audio summaries

4.4 Knowledge Retrieval Agent Evaluation

We conducted a systematic evaluation of the
Knowledge Retrieval module, comparing three dis-
tinct retrieval flows:

¢ Web Search Flow: uses Web APISs to retrieve
current sources

* LLM Knowledge Flow: synthesizes knowl-
edge from model training data

¢ Hybrid Retrieval Flow:
Search with LLM synthesis

combines Web

Methodology. We tested each flow on two aca-
demic topics: Machine Learning Transformers and
Quantum Computing Algorithms. Evaluation met-
rics included:

* Relevance (30% weight)
¢ Credibility (25%)
* Coverage (20%)

* Recency (15%)

* Accessibility (10%)

Each flow was scored by manual evaluation of
sources retrieved (quality scores normalized to a
10-point scale). Processing time and content length
were also recorded.

Prompting Design and Task Instructions. Each
retrieval flow was implemented with carefully
crafted prompts designed to maximize source qual-
ity and educational relevance. The Web Search
Flow targets current academic publications through
domain-specific search constraints (.edu sites, aca-
demic databases), while the LLM Knowledge Flow
focuses on synthesizing foundational knowledge
from training data. The Hybrid Flow explicitly
combines both strategies through a two-stage re-
trieval and synthesis process.

All flows received identical input specifications:
a topic description and context from user-selected
text. The prompts were designed to return sources
in a consistent format including title, authors, publi-
cation venue, credibility assessment, and relevance
justification. Key design principles included ex-
plicit output format specifications, domain-specific
search constraints, credibility assessment require-
ments, and educational context alignment.

Evaluation Protocol. For each topic (Machine
Learning Transformers, Quantum Computing Algo-
rithms), we executed all three flows and manually
evaluated the returned sources using our weighted
scoring system. Sources were assessed for aca-
demic rigor, citation potential, and educational
value for the target learning context. Processing
time and content length were recorded to assess
computational efficiency alongside quality metrics.

Flow Avg Time | Total Score [Sources Content
(s) Count Length
Web Search 11.64 75 4.0 17445
LLM Knowledge | 17.16 8.05 4.0 3722.0
Hybrid Retrieval |19.83 9.15 5.5 3206.5

Table 1: Knowledge Retrieval module evaluation re-
sults:contentReference[oaicite:1]index=1

Results.

Discussion. The Hybrid Retrieval flow produced
the highest overall score (9.15), with strong cov-
erage and credibility. LLM Knowledge flow per-
formed well for synthesizing foundational content
but lacked recency. Web Search was fast and
provided current sources but with lower coverage
depth.

4.5 Quiz Generation Evaluation

The Quiz Generation module is designed as a multi-
purpose CrewAl agent that receives a highlighted
text segment and generates a structured quiz. This
agent runs in the QA pipeline implemented in the
‘ishika/qa-pipeline‘ branch and is invoked via the
‘MultiAgentOrchestrator® class defined in our back-
end.

Inputs.

» User-highlighted text extracted from the up-
loaded PDF via the frontend.

* Optional user question or refinement input
passed as part of the orchestrator query.

Outputs.
* Question-Answer (QA) pairs
* Multiple-Choice Questions (MCQs)
* Higher-order and situational-based questions

Implementation. The Quiz Agent is configured
in ‘agents.py” using a CrewAl agent with a static
system prompt template. The orchestrator passes
the highlighted text to the agent, which formats its
output into multiple structured quiz blocks. The en-
tire process is managed by the ‘MultiAgentOrches-
trator‘, which runs this agent either in isolation or
as part of a larger flow involving summarization or

QA.

Evaluation. We generated quizzes using the
prompt “Explain photosynthesis in plants” and in-
spected the resulting content. The outputs were
manually evaluated on:

¢ Coverage of input text

¢ Clarity of questions and answers
 Diversity across question types

* Accuracy of answers

Results. The agent consistently produced distinct
question types with minimal prompt engineering.
MCQs and QA pairs were highly accurate. Aver-
age runtime per quiz generation was 8.2 seconds
using GPT-3.5 Turbo. The outputs required no post-
processing, showing strong template consistency.

4.6 TTS Module Evaluation

The podcast-style summary feature is implemented
as a CrewAl agent integrated with OpenAl and
Eleven Labs API. This module converts Al-
generated summaries into spoken audio streams
to support multimodal learning.

Inputs.
* Text summaries generated by the Summariza-
tion Agent
* Optional metadata such as language
or speaker preferences (not yet user-
configurable)
Outputs.
* Byte stream of synthesized speech, returned
as audio files (MP3/WAV)
Implementation. The TTS Agent is a CrewAl

agent that receives summarized text (via the orches-
trator). The input text like “Explain photosynthesis
in plants” is passed and converted to audio chunks.
The final audio is reconstructed from streaming
responses and returned to the user.

Evaluation. Testing was performed using 5 sam-
ple summaries from different subjects (biology,
mathematics, history). Evaluation focused on:

* Audio quality and pronunciation
* Fidelity to the input summary
* Frontend compatibility for audio playback

Results. Audio output from the TTS Agent was
clear, natural-sounding, and required no post-
processing. Integration with the frontend enabled
successful download and playback. Runtime for au-
dio generation averaged 10 seconds per summary.
Minor failures occurred when input summaries ex-
ceeded API token limits, but these were resolved
by limiting summary length. As showcased be-
low, user feedback indicated strong engagement
potential for auditory learning contexts.

4.7 Summary Agent Assessment

The summary assessment is designed to generate
summaries of varying complexities based on top-
ics introduced to EQuMUSE. To evaluate the mod-
ule, we utilized the ROUGE and Bertscore metrics
to understand the grammatical quality of the re-
sponses.

Metric Score
Engagement 4.1
Clarity 4.5
Naturalness 3.2
Relevance 4.4

Table 2: TTS Agent evaluation results.

Table 3: Summary flow evaluation results using ROUGE
metrics and BERTScore.

Level R-1 R-2 R-L BERT Time(s)
Beginner 0.463 0.163 0.257 0.826 76.3
Intermediate 0.213 0.025 0.107 0.812 81.9
Advanced 0.190 0.035 0.129 0.805 67.5
Beginner 0.293 0.079 0.164 0.823 55.7
Intermediate 0.245 0.035 0.140 0.779 68.7
Intermediate 0.316 0.061 0.165 0.807 61.5

Advanced 0.242 0.049 0.161

0.280 0.064 0.160

0.793 50.7
0.806 64.7

Average

The rouge-scores measured the lexical overlap
while bert scores focused on the semantic quality
of the summaries in comparison to te original doc-
uments. However to a lack of available metrics
to properly evaluate the relevancy and clarity of
the summaries, we utilized human evaluations to
measure this as showcased above.

Metric Score
Usefulness 4.0
Clarity 35
Coverage 3.0

Conciseness 4.0

Table 4: Note Summarization Agent evaluation results.

The summaries were evaluated based on four
chosen metrics. As the table showcases, all of
the results showcased average to above average
responses, with the strongest metrics being the use-
fulness and conciseness of the summaries. How-
ever it is clear that the quality of the information
can be improved given the lower results in clarity
and coverage.

4.8 Quiz Generation Evaluations

Similar to the summary agent, we determined the
best way to evaluate the quality of the generated
quizzes was to perform human evaluations and pro-
vide similar metrics (Helpfulness, Correctness, Dif-

ficulty, Coverage) for the questions to be graded on.
The results of this are showcased below:

Metric Score

Helpfulness 4.0
Correctness 3.5
Difficulty 4.0
Coverage 4.0

Table 5: Practice Assessment Agent evaluation results.

Most of the metrics showcased above average
results, the correctness metric being the only case
with a score below 4. This is however a concern be-
cause one of the most important parts of the module
is ensuring that the questions being generated make
sense and are correct according to the information
in the pdfs.

Another concern is the balance between diffi-
culty and helpfulness, because we do not want the
questions to be too challenging or too simple as this
would negatively affect how useful the assessments
actually are.

5 Generated Examples from Treeformer
Content

To demonstrate the capabilities of EduMUSE’s
summarization and assessment agents, we include
example outputs generated from a technical re-
search paper: Treeformers: Enhancing Hierarchi-
cal Understanding in NLP (6).

5.1 Generated Summary (Intermediate Level)

Title: Treeformers: Enhancing Hier-
archical Understanding in NLP

Traditional Transformers struggle with
modeling hierarchical sentence structure.
Treeformer, inspired by the CKY parsing
algorithm, enhances compositional gen-
eralization and improves machine trans-
lation and summarization. It introduces
tree-encoder layers that aggregate sub-
phrases through attention-based pooling,
capturing predicate-argument structures
more effectively. With optimizations re-
ducing complexity from cubic to linear,
Treeformer outperforms baselines in sev-
eral NLP tasks while remaining compu-
tationally feasible.

5.2 Generated Practice Assessment
(Intermediate)

Multiple Choice:

Q: What is one benefit of Treeformer over tradi-
tional Transformer models?

A) It requires no training data.

B) It improves compositional generalization
using hierarchical encodings. ()

C) It uses convolutional layers instead of
attention.

D) It eliminates positional encodings en-
tirely.

Short Answer:

Q: What algorithm inspired the
Treeformer design, and why?

A: The CKY algorithm, because it struc-
tures sentences hierarchically using com-
position and pooling strategies to simu-
late parse trees.

Essay Prompt (8 pts):

Explain how Treeformer captures hier-
archical phrase structure and why this
matters for NLP tasks such as translation
and summarization. Support your claims
with concepts from the Treeformers pa-
per.

6 Conclusion

EduMUSE demonstrates the potential of modular,
multimodal Al agents to transform the way stu-
dents engage with academic content. By empower-
ing learners to initiate tailored workflows—ranging
from summarization and quiz generation to knowl-
edge retrieval and podcast-style explanations—our
system promotes deeper comprehension, flexibility,
and sustained engagement.

Although our MVP does not yet incorporate all
envisioned features, it lays a strong foundation
for future work in adaptive, user-centered educa-
tional tooling. Going forward, we plan to enhance
session-level personalization, integrate learning an-
alytics, and explore more robust evaluation strate-
gies.

EduMUSE represents a step toward Al systems
that not only inform but actively support how stu-
dents learn.

7 Future Work

Here are several promising extensions remain for
future development:

* Grading and Feedback Modules: Imple-
ment handwritten answer grading and auto-
mated feedback generation via a Grading As-
sistant Agent. This would enable more com-
prehensive assessment workflows within the
same platform.

* Difficulty Calibration and Adaptation: In-
troduce difficulty-level selection for generated
content (summaries, quizzes), allowing stu-
dents to engage with materials at beginner,
intermediate, or advanced levels depending
on their background.

* Multimodal Content Understanding: Ex-
pand input support beyond text, including di-
agrams, tables, and figures from academic
PDFs. This would involve visual content pars-
ing and cross-modal reasoning capabilities.

* Session Packaging and Study Progres-
sion: Develop the ability to package a com-
plete study session—including summaries,
assessments, podcast audio, and retrieved
sources—into a structured, exportable learn-
ing bundle.

* User Interface Improvements and Accessi-
bility: Enhance the frontend to better support
accessibility (e.g., screen reader compatibility,
keyboard navigation) and enable richer, more
intuitive interactions with the AI modules.

* User Studies and Longitudinal Evaluation:
Perform user-centered studies to evaluate
learning outcomes, engagement, and usabil-
ity over time, particularly focusing on how
students use different agents to reinforce un-
derstanding.

These improvements will further position Edu-
MUSE as a comprehensive, Al-enhanced study
companion capable of supporting diverse learning
preferences and educational contexts.

8 Codebase

The EAuMUSE system was collaboratively devel-
oped using GitHub, and the full codebase is avail-
able at https://github.com/iamsorenl/EduMUSE.

A Prompts
This appendix contains all prompts used within EdQuMUSE.

A.1 Prompts from agents.py
A.1.1 Answering with Context
You are an expert assistant. Use the following context to answer:

{context_block}

Question: {question}
Answer:

A.1.2 Answering without Context

You are an expert assistant.
Question: {question}
Answer:

A.1.3 Answer Verification

You are a fact-check assistant.
Context:
{combined_context}

Answer to verify:
{answer}

Is the answer fully supported by the context? If yes, just respond 'YES'. If not, respond 'NO'
and briefly explain which part is not supported.

A.1.4 Quiz Generation
From the following content, generate a structured quiz in this format:

1. 10 Question—-Answer Pairs

2. 20 Multiple Choice Questions (4 options each, correct answer marked)
3. 5 Higher-Order Thinking Questions with Answers

4. 5 Situational-Based Questions with Answers

Content:

{content}

A.2 Prompts from assessment_tasks.yaml
A.2.1 Assessment Question Design

Design {num_questions} high-quality assessment questions about '{topic}' based on the provided
academic sources.

**Question Distribution Requirements*x*:
1. **xQuestion Types*xx*:
- Multiple Choice: {mc_count} questions (4 options each)
- Short Answer: {sa_count} questions (2-3 sentence responses)

- Essay/Long Answer: {essay_count} questions (paragraph+ responses)

2. **Cognitive Level Distribution** (Bloom's Taxonomy):

- Remember (recall facts): 20% of questions

- Understand (explain concepts): 20% of questions
- Apply (use in new situations): 25% of questions
- Analyze (break down, compare): 20% of questions
- Evaluate (judge, critique): 10% of questions

- Create (design, construct): 5% of questions

3. **Question Design Standards*x*:
- Clear, unambiguous wording free of double negatives
- Test understanding, not reading comprehension
- Culturally neutral and inclusive language
- No trick questions or gotchas
- Progressive difficulty within each type
- Cover key concepts proportionally

4. *%xFor Each Question, Providexx:
- Question number and text
- Question type (MC/SA/Essay)
- Cognitive level targeted
Concept(s) being tested
Estimated difficulty (Easy/Medium/Hard)
Time estimate for completion

Base questions on these sources:
{sources}

Ensure questions comprehensively assess understanding of the material.

A.2.2 Answer Validation and Rubric Creation

Create comprehensive answer keys and assessment materials for all {num_questions} questions.

For Multiple Choice Questions:

Clearly mark the correct answer

Explain why the correct answer is right
Explain why each distractor is wrong
Note common misconceptions addressed
Provide learning tips for the concept

g~ w N =

*xFor Short Answer Questionsx:
1. Provide ideal model answer (2-3 sentences)
2. List key points that must be included (partial credit)
3. Create scoring rubric:
- 3 points: Complete, accurate answer with all key points
- 2 points: Mostly correct with minor omissions
- 1 point: Partially correct or major omissions
- @ points: Incorrect or no relevant content
. Note acceptable answer variations
. Common errors to watch for

(S B0

**For Essay Questionsxx:
1. Create detailed scoring rubric with criteria:
- Content accuracy and completeness (40%)

- Analysis and critical thinking (30%)

- Use of examples/evidence (20%)

- Organization and clarity (10%)

Provide exemplar response outline

List required elements for full credit

Describe levels of performance (Excellent/Good/Satisfactory/Needs Improvement)
Sample strong response excerpts

g~ w N

**Additional Requirementsx*x:

- Reference specific source material for each answer

- Include educational explanations that teach, not just evaluate
Suggest follow-up learning for incorrect answers

Ensure all answers are factually accurate and up-to-date

A.2.3 Difficulty Calibration and Final Assessment Creation

Finalize the assessment for {user_level} learners with appropriate difficulty calibration
and enhancements.

**xCalibration Tasks*x:

1. *xDifficulty Review and Adjustmentxx:
- Verify each question matches intended difficulty
- Adjust vocabulary and complexity for {user_level}
- Ensure appropriate progression (easy = challenging)
- Balance question types and cognhitive demands
Check total time requirement is reasonable

2. *xAssessment Organizationxx:
- Sequence questions optimally:
* Start with 1-2 confidence builders
* Alternate question types if mixed format
* Place most challenging items in middle third
* End with moderate difficulty
- Group by topic or format based on assessment type
- Create clear section headers and transitions

3. *xInstructions and Formatting*x:
- Write clear, student-friendly instructions
Include time recommendations per section
- Format for easy reading and navigation
Add point values for each question
Create answer sheet template if needed

4. **xLearning Enhancement Featuresxx:
- Pre-assessment preparation checklist
- Test-taking strategy reminders
Self-check prompts before submission
Post-assessment reflection questions
Suggested study activities based on performance

5. **Create Final Versions*x:
- Student Version: Clean question-only format

- Instructor Version: Complete with answers/rubrics
- Quick Reference: Answer key summary
- Digital Version: Formatted for online delivery

**Metadata to Include#x:

- Total points possible

- Recommended time limit

- Passing score suggestion (e.g., 70%)
- Learning objectives alignment

- Prerequisite knowledge assumed

A.3 Prompts from podcast_flow.py
A.3.1 Podcast Script Generation

You are a podcast script writer. Given the following content, generate a podcast-style
conversation between a Host and a Guest. The conversation should be informative, engaging,
and cover the main points. The topic is: {topic}. Return a #**valid JSON list*x of
dictionaries. Each dictionary must have keys: 'speaker', 'text', 'voice_id'. Use this
voice_id for Host: JBFgnCBsd6RMkjVDRZzb, and this for Guest: EXAVITQu4vr4xnSDxMalL.

Use only double quotes (") for all keys and values. Do not wrap the output in markdown
or code blocks.

Content:
{content[:3000]}

Podcast Dialogue:

A.4 Prompts from web_search_flow.py
A4.1 Academic Web Search

Search the web for high-quality academic sources about: {topic}

Use advanced search operators:

- site:edu OR site:arxiv.org OR site:scholar.google.com

- filetype:pdf for academic papers

- "peer reviewed” OR "journal article” for credible sources

Find 5-8 credible academic sources with:
- Title and URL

- Publication source/institution

- Brief description of relevance
Credibility assessment (1-10 scale)

Focus on recent publications (2020+) and authoritative domains.

A.5 Prompts from hybrid_retrieval_flow.py
A.5.1 Hybrid Knowledge Retrieval

Create a comprehensive academic source collection about: {topic}
Use BOTH approaches:

1. WEB SEARCH COMPONENT:
- Search for recent papers and current developments

- Focus on 2023-2025 publications
- Target academic databases and .edu sites

2. LLM KNOWLEDGE COMPONENT:
- Identify foundational/seminal works from training data
- Include highly-cited classic papers
- Add authoritative textbooks and review articles

3. SYNTHESIS:
- Combine both sources into a coherent collection
- Remove duplicates and rank by relevance + credibility
- Provide 8-10 sources total with clear categorization

For each source, specify:

- Title, authors, publication venue
- Source type (recent/foundational)
- Retrieval method (web/knowledge)

- Relevance and credibility scores

A.6 Prompts from llm_knowledge_flow.py
A.6.1 LLM Knowledge Retrieval

Using your comprehensive training data knowledge, provide academic sources about: {topic}

Generate a curated list of 5-8 academic sources including:

- Key academic papers, textbooks, and authoritative sources
- Publication details (authors, journals, approximate years)
- Brief description of each source's contribution

- Relevance to the topic (1-10 scale)

Focus on:

- Foundational papers and seminal works

- Highly cited research in the field

- Authoritative textbooks and review papers

- Recent significant developments (within training data cutoff)

Note: This is based on training data, not real-time web search.

A.7 Prompts from summary_tasks.yaml

A.7.1 Key Concept Extraction

Analyze the provided academic sources about '{topic}' and extract:

1. =**xCore Concepts**: Identify 5-10 key concepts that are essential for understanding
the topic

2. *xLearning Objectives**: Determine what students should know/be able to do after
studying this material

3. **xConcept Relationshipsxx: Map how concepts connect and build upon each other

4. *x*Prerequisite Knowledgexx: Identify what learners need to know beforehand

%Difficulty Indicatorsx: Note which concepts are typically challenging for learners

(&)]

Sources to analyze:
{sources}

Provide a structured analysis that will guide summary creation.

A.7.2 Multi-level Summary Creation

Based on the concept analysis, create educational summaries for topic '{topic}':
Create THREE versions targeting different levels:

1. =*x*xBeginner Level*x:
* Use simple language and everyday examples
* Focus on fundamental concepts only
* Include helpful analogies and visual descriptions
* Avoid technical jargon
* Length: 300-400 words
2. *xIntermediate Levelxx*:
* Include more technical terminology with clear explanations
Cover main concepts and some applications
Provide real-world examples from the field
Show connections between concepts
Length: 500-700 words

* ok % %

3. **Advanced Level**:

Use field-appropriate technical language
Include nuanced details and edge cases
Discuss current research and open questions
Connect to broader theoretical frameworks
Length: 800-1000 words

%

* %k % ok

Summary format requested: {summary_format}
User's primary level: {user_level}

A.7.3 Learner-Adapted Summary Refinement

Refine and optimize the summaries for the specific learner:

User Level: {user_level}
Learning Objectives: {learning_objectives if learning_objectives else 'General understanding'?}

Enhance the summaries by:

Highlighting the most relevant summary level for the user
**Adding transitionsxx between levels to show learning progression
**Including study tipsxx specific to the user's level

xSuggesting next stepsx for continued learning

**Creating a glossaryxx of important terms

g~ w N =

Also provide:

- Key takeaways (5-7 bullet points)

- Recommended study sequence

- Self-check questions for understanding

References

[1] Danielle R. Thomas, Jionghao Lin, Erin Gatz, Ashish Gurung, Shivang Gupta, Kole Norberg, Stephen E.
Fancsali, Vincent Aleven, Lee Branstetter, Emma Brunskill, and Kenneth R. Koedinger. 2023. Improving Student
Learning with Hybrid Human-AI Tutoring: A Three-Study Quasi-Experimental Investigation. arXiv preprint
arXiv:2312.11274.

[2] Chenxi Dong, Yimin Yuan, Kan Chen, Shupei Cheng, and Chujie Wen. 2023. How to Build an Adaptive Al
Tutor for Any Course Using Knowledge Graph-Enhanced Retrieval-Augmented Generation (KG-RAG). arXiv
preprint arXiv:2311.17696.

[3] Ty Feng, Sa Liu, and Dipak Ghosal. 2024. CourseAssist: Pedagogically Appropriate Al Tutor for Computer
Science Education. arXiv preprint arXiv:2407.10246.

[4] Zhoumingju Jiang and Mengjun Jiang. 2024. Beyond Answers: Large Language Model-Powered Tutoring
System in Physics Education for Deep Learning and Precise Understanding. arXiv preprint arXiv:2406.10934.

[5] Ethan Brun and Sebastian Riedel. 2019. Key Phrase Extraction for Generating Educational Question-Answer
Pairs. Stanford CS Paper. Available at: https://cs.stanford.edu/people/ebrun/papers/Keyphrase_for_
education.pdf

[6] Nilay Patel and Jeffrey Flanigan. 2024. Treeformers: Enhancing Hierarchical Understanding in Natural Language
Processing. Unpublished Manuscript, UC Santa Cruz.

https://cs.stanford.edu/people/ebrun/papers/Keyphrase_for_education.pdf
https://cs.stanford.edu/people/ebrun/papers/Keyphrase_for_education.pdf

